Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CALText: Contextual Attention Localization for Offline Handwritten Text (2111.03952v1)

Published 6 Nov 2021 in cs.CV, cs.LG, and cs.NE

Abstract: Recognition of Arabic-like scripts such as Persian and Urdu is more challenging than Latin-based scripts. This is due to the presence of a two-dimensional structure, context-dependent character shapes, spaces and overlaps, and placement of diacritics. Not much research exists for offline handwritten Urdu script which is the 10th most spoken language in the world. We present an attention based encoder-decoder model that learns to read Urdu in context. A novel localization penalty is introduced to encourage the model to attend only one location at a time when recognizing the next character. In addition, we comprehensively refine the only complete and publicly available handwritten Urdu dataset in terms of ground-truth annotations. We evaluate the model on both Urdu and Arabic datasets and show that contextual attention localization outperforms both simple attention and multi-directional LSTM models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)