Papers
Topics
Authors
Recent
2000 character limit reached

Order-Guided Disentangled Representation Learning for Ulcerative Colitis Classification with Limited Labels (2111.03815v2)

Published 6 Nov 2021 in eess.IV and cs.CV

Abstract: Ulcerative colitis (UC) classification, which is an important task for endoscopic diagnosis, involves two main difficulties. First, endoscopic images with the annotation about UC (positive or negative) are usually limited. Second, they show a large variability in their appearance due to the location in the colon. Especially, the second difficulty prevents us from using existing semi-supervised learning techniques, which are the common remedy for the first difficulty. In this paper, we propose a practical semi-supervised learning method for UC classification by newly exploiting two additional features, the location in a colon (e.g., left colon) and image capturing order, both of which are often attached to individual images in endoscopic image sequences. The proposed method can extract the essential information of UC classification efficiently by a disentanglement process with those features. Experimental results demonstrate that the proposed method outperforms several existing semi-supervised learning methods in the classification task, even with a small number of annotated images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.