Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Do we still need ImageNet pre-training in remote sensing scene classification? (2111.03690v3)

Published 5 Nov 2021 in cs.CV

Abstract: Due to the scarcity of labeled data, using supervised models pre-trained on ImageNet is a de facto standard in remote sensing scene classification. Recently, the availability of larger high resolution remote sensing (HRRS) image datasets and progress in self-supervised learning have brought up the questions of whether supervised ImageNet pre-training is still necessary for remote sensing scene classification and would supervised pre-training on HRRS image datasets or self-supervised pre-training on ImageNet achieve better results on target remote sensing scene classification tasks. To answer these questions, in this paper we both train models from scratch and fine-tune supervised and self-supervised ImageNet models on several HRRS image datasets. We also evaluate the transferability of learned representations to HRRS scene classification tasks and show that self-supervised pre-training outperforms the supervised one, while the performance of HRRS pre-training is similar to self-supervised pre-training or slightly lower. Finally, we propose using an ImageNet pre-trained model combined with a second round of pre-training using in-domain HRRS images, i.e. domain-adaptive pre-training. The experimental results show that domain-adaptive pre-training results in models that achieve state-of-the-art results on HRRS scene classification benchmarks. The source code and pre-trained models are available at \url{https://github.com/risojevicv/RSSC-transfer}.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.