Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Towards Learning Generalizable Driving Policies from Restricted Latent Representations (2111.03688v2)

Published 5 Nov 2021 in cs.RO

Abstract: Training intelligent agents that can drive autonomously in various urban and highway scenarios has been a hot topic in the robotics society within the last decades. However, the diversity of driving environments in terms of road topology and positioning of the neighboring vehicles makes this problem very challenging. It goes without saying that although scenario-specific driving policies for autonomous driving are promising and can improve transportation safety and efficiency, they are clearly not a universal scalable solution. Instead, we seek decision-making schemes and driving policies that can generalize to novel and unseen environments. In this work, we capitalize on the key idea that human drivers learn abstract representations of their surroundings that are fairly similar among various driving scenarios and environments. Through these representations, human drivers are able to quickly adapt to novel environments and drive in unseen conditions. Formally, through imposing an information bottleneck, we extract a latent representation that minimizes the \textit{distance} -- a quantification that we introduce to gauge the similarity among different driving configurations -- between driving scenarios. This latent space is then employed as the input to a Q-learning module to learn generalizable driving policies. Our experiments revealed that, using this latent representation can reduce the number of crashes to about half.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.