Papers
Topics
Authors
Recent
2000 character limit reached

Spatial-Temporal Residual Aggregation for High Resolution Video Inpainting (2111.03574v1)

Published 5 Nov 2021 in cs.CV

Abstract: Recent learning-based inpainting algorithms have achieved compelling results for completing missing regions after removing undesired objects in videos. To maintain the temporal consistency among the frames, 3D spatial and temporal operations are often heavily used in the deep networks. However, these methods usually suffer from memory constraints and can only handle low resolution videos. We propose STRA-Net, a novel spatial-temporal residual aggregation framework for high resolution video inpainting. The key idea is to first learn and apply a spatial and temporal inpainting network on the downsampled low resolution videos. Then, we refine the low resolution results by aggregating the learned spatial and temporal image residuals (details) to the upsampled inpainted frames. Both the quantitative and qualitative evaluations show that we can produce more temporal-coherent and visually appealing results than the state-of-the-art methods on inpainting high resolution videos.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.