Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

POSHAN: Cardinal POS Pattern Guided Attention for News Headline Incongruence (2111.03547v1)

Published 5 Nov 2021 in cs.CL, cs.AI, and cs.IR

Abstract: Automatic detection of click-bait and incongruent news headlines is crucial to maintaining the reliability of the Web and has raised much research attention. However, most existing methods perform poorly when news headlines contain contextually important cardinal values, such as a quantity or an amount. In this work, we focus on this particular case and propose a neural attention based solution, which uses a novel cardinal Part of Speech (POS) tag pattern based hierarchical attention network, namely POSHAN, to learn effective representations of sentences in a news article. In addition, we investigate a novel cardinal phrase guided attention, which uses word embeddings of the contextually-important cardinal value and neighbouring words. In the experiments conducted on two publicly available datasets, we observe that the proposed methodgives appropriate significance to cardinal values and outperforms all the baselines. An ablation study of POSHAN shows that the cardinal POS-tag pattern-based hierarchical attention is very effective for the cases in which headlines contain cardinal values.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.