Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New Streaming Algorithms for High Dimensional EMD and MST (2111.03528v1)

Published 5 Nov 2021 in cs.DS

Abstract: We study streaming algorithms for two fundamental geometric problems: computing the cost of a Minimum Spanning Tree (MST) of an $n$-point set $X \subset {1,2,\dots,\Delta}d$, and computing the Earth Mover Distance (EMD) between two multi-sets $A,B \subset {1,2,\dots,\Delta}d$ of size $n$. We consider the turnstile model, where points can be added and removed. We give a one-pass streaming algorithm for MST and a two-pass streaming algorithm for EMD, both achieving an approximation factor of $\tilde{O}(\log n)$ and using polylog$(n,d,\Delta)$-space only. Furthermore, our algorithm for EMD can be compressed to a single pass with a small additive error. Previously, the best known sublinear-space streaming algorithms for either problem achieved an approximation of $O(\min{ \log n , \log (\Delta d)} \log n)$ [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20]. For MST, we also prove that any constant space streaming algorithm can only achieve an approximation of $\Omega(\log n)$, analogous to the $\Omega(\log n)$ lower bound for EMD of [Andoni-Indyk-Krauthgamer '08]. Our algorithms are based on an improved analysis of a recursive space partitioning method known generically as the Quadtree. Specifically, we show that the Quadtree achieves an $\tilde{O}(\log n)$ approximation for both EMD and MST, improving on the $O(\min{ \log n , \log (\Delta d)} \log n)$ approximation of [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20].

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.