Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SocialVec: Social Entity Embeddings (2111.03514v1)

Published 5 Nov 2021 in cs.SI, cs.AI, and cs.LG

Abstract: This paper introduces SocialVec, a general framework for eliciting social world knowledge from social networks, and applies this framework to Twitter. SocialVec learns low-dimensional embeddings of popular accounts, which represent entities of general interest, based on their co-occurrences patterns within the accounts followed by individual users, thus modeling entity similarity in socio-demographic terms. Similar to word embeddings, which facilitate tasks that involve text processing, we expect social entity embeddings to benefit tasks of social flavor. We have learned social embeddings for roughly 200,000 popular accounts from a sample of the Twitter network that includes more than 1.3 million users and the accounts that they follow, and evaluate the resulting embeddings on two different tasks. The first task involves the automatic inference of personal traits of users from their social media profiles. In another study, we exploit SocialVec embeddings for gauging the political bias of news sources in Twitter. In both cases, we prove SocialVec embeddings to be advantageous compared with existing entity embedding schemes. We will make the SocialVec entity embeddings publicly available to support further exploration of social world knowledge as reflected in Twitter.

Citations (1)

Summary

We haven't generated a summary for this paper yet.