Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Versatile Learned Video Compression (2111.03386v2)

Published 5 Nov 2021 in eess.IV and cs.CV

Abstract: Learned video compression methods have demonstrated great promise in catching up with traditional video codecs in their rate-distortion (R-D) performance. However, existing learned video compression schemes are limited by the binding of the prediction mode and the fixed network framework. They are unable to support various inter prediction modes and thus inapplicable for various scenarios. In this paper, to break this limitation, we propose a versatile learned video compression (VLVC) framework that uses one model to support all possible prediction modes. Specifically, to realize versatile compression, we first build a motion compensation module that applies multiple 3D motion vector fields (i.e., voxel flows) for weighted trilinear warping in spatial-temporal space. The voxel flows convey the information of temporal reference position that helps to decouple inter prediction modes away from framework designing. Secondly, in case of multiple-reference-frame prediction, we apply a flow prediction module to predict accurate motion trajectories with unified polynomial functions. We show that the flow prediction module can largely reduce the transmission cost of voxel flows. Experimental results demonstrate that our proposed VLVC not only supports versatile compression in various settings, but also is the first end-to-end learned video compression method that outperforms the latest VVC/H.266 standard reference software in terms of MS-SSIM.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.