Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Maillard Sampling: Boltzmann Exploration Done Optimally (2111.03290v2)

Published 5 Nov 2021 in stat.ML and cs.LG

Abstract: The PhD thesis of Maillard (2013) presents a rather obscure algorithm for the $K$-armed bandit problem. This less-known algorithm, which we call Maillard sampling (MS), computes the probability of choosing each arm in a \textit{closed form}, which is not true for Thompson sampling, a widely-adopted bandit algorithm in the industry. This means that the bandit-logged data from running MS can be readily used for counterfactual evaluation, unlike Thompson sampling. Motivated by such merit, we revisit MS and perform an improved analysis to show that it achieves both the asymptotical optimality and $\sqrt{KT\log{T}}$ minimax regret bound where $T$ is the time horizon, which matches the known bounds for asymptotically optimal UCB. %'s performance. We then propose a variant of MS called MS$+$ that improves its minimax bound to $\sqrt{KT\log{K}}$. MS$+$ can also be tuned to be aggressive (i.e., less exploration) without losing the asymptotic optimality, a unique feature unavailable from existing bandit algorithms. Our numerical evaluation shows the effectiveness of MS$+$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)