Papers
Topics
Authors
Recent
2000 character limit reached

Dialogue Inspectional Summarization with Factual Inconsistency Awareness (2111.03284v1)

Published 5 Nov 2021 in cs.CL and cs.AI

Abstract: Dialogue summarization has been extensively studied and applied, where the prior works mainly focused on exploring superior model structures to align the input dialogue and the output summary. However, for professional dialogues (e.g., legal debate and medical diagnosis), semantic/statistical alignment can hardly fill the logical/factual gap between input dialogue discourse and summary output with external knowledge. In this paper, we mainly investigate the factual inconsistency problem for Dialogue Inspectional Summarization (DIS) under non-pretraining and pretraining settings. An innovative end-to-end dialogue summary generation framework is proposed with two auxiliary tasks: Expectant Factual Aspect Regularization (EFAR) and Missing Factual Entity Discrimination (MFED). Comprehensive experiments demonstrate that the proposed model can generate a more readable summary with accurate coverage of factual aspects as well as informing the user with potential missing facts detected from the input dialogue for further human intervention.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.