Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dynamic Data Augmentation with Gating Networks for Time Series Recognition (2111.03253v3)

Published 5 Nov 2021 in cs.LG

Abstract: Data augmentation is a technique to improve the generalization ability of machine learning methods by increasing the size of the dataset. However, since every augmentation method is not equally effective for every dataset, you need to select an appropriate method carefully. We propose a neural network that dynamically selects the best combination of data augmentation methods using a mutually beneficial gating network and a feature consistency loss. The gating network is able to control how much of each data augmentation is used for the representation within the network. The feature consistency loss gives a constraint that augmented features from the same input should be in similar. In experiments, we demonstrate the effectiveness of the proposed method on the 12 largest time-series datasets from 2018 UCR Time Series Archive and reveal the relationships between the data augmentation methods through analysis of the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.