Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Entropic Independence II: Optimal Sampling and Concentration via Restricted Modified Log-Sobolev Inequalities (2111.03247v1)

Published 5 Nov 2021 in cs.DS, math-ph, math.MP, and math.PR

Abstract: We introduce a framework for obtaining tight mixing times for Markov chains based on what we call restricted modified log-Sobolev inequalities. Modified log-Sobolev inequalities (MLSI) quantify the rate of relative entropy contraction for the Markov operator, and are notoriously difficult to establish. However, infinitesimally close to stationarity, entropy contraction becomes equivalent to variance contraction, a.k.a. a Poincare inequality, which is significantly easier to establish through, e.g., spectral analysis. Motivated by this observation, we study restricted modified log-Sobolev inequalities that guarantee entropy contraction not for all starting distributions, but for those in a large neighborhood of the stationary distribution. We show how to sample from the hardcore and Ising models on $n$-node graphs that have a constant $\delta$ relative gap to the tree-uniqueness threshold, in nearly-linear time $\widetilde O_{\delta}(n)$. Notably, our bound does not depend on the maximum degree $\Delta$, and is therefore optimal even for high-degree graphs. This improves on prior mixing time bounds of $\widetilde O_{\delta, \Delta}(n)$ and $\widetilde O_{\delta}(n2)$, established via (non-restricted) modified log-Sobolev and Poincare inequalities respectively. We further show that optimal concentration inequalities can still be achieved from the restricted form of modified log-Sobolev inequalities. To establish restricted entropy contraction, we extend the entropic independence framework of Anari, Jain, Koehler, Pham, and Vuong to the setting of distributions that are spectrally independent under a restricted set of external fields. We also develop an orthogonal trick that might be of independent interest: utilizing Bernoulli factories we show how to implement Glauber dynamics updates on high-degree graphs in $O(1)$ time, assuming standard adjacency array representation of the graph.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.