Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems (2111.03237v3)

Published 5 Nov 2021 in cs.IT, cs.LG, and math.IT

Abstract: We consider an inverse problem $\mathbf{y}= f(\mathbf{Ax})$, where $\mathbf{x}\in\mathbb{R}n$ is the signal of interest, $\mathbf{A}$ is the sensing matrix, $f$ is a nonlinear function and $\mathbf{y} \in \mathbb{R}m$ is the measurement vector. In many applications, we have some level of freedom to design the sensing matrix $\mathbf{A}$, and in such circumstances we could optimize $\mathbf{A}$ to achieve better reconstruction performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on the difficulty of recovering $\mathbf{x}$ from $\mathbf{y}$. In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation propagation (EP) algorithm. We define a notion of spikiness for the spectrum of $\bmmathbfA}$ and show the importance of this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery performance depends on $f$. Based on our framework, we are able to show that, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead to better performance. Our results unify and substantially generalize existing results that compare Gaussian and orthogonal matrices, and provide a platform towards designing optimal sensing systems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.