Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Technical Report: Disentangled Action Parsing Networks for Accurate Part-level Action Parsing (2111.03225v1)

Published 5 Nov 2021 in cs.CV

Abstract: Part-level Action Parsing aims at part state parsing for boosting action recognition in videos. Despite of dramatic progresses in the area of video classification research, a severe problem faced by the community is that the detailed understanding of human actions is ignored. Our motivation is that parsing human actions needs to build models that focus on the specific problem. We present a simple yet effective approach, named disentangled action parsing (DAP). Specifically, we divided the part-level action parsing into three stages: 1) person detection, where a person detector is adopted to detect all persons from videos as well as performs instance-level action recognition; 2) Part parsing, where a part-parsing model is proposed to recognize human parts from detected person images; and 3) Action parsing, where a multi-modal action parsing network is used to parse action category conditioning on all detection results that are obtained from previous stages. With these three major models applied, our approach of DAP records a global mean of $0.605$ score in 2021 Kinetics-TPS Challenge.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.