Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Breaking the $n^k$ Barrier for Minimum $k$-cut on Simple Graphs (2111.03221v2)

Published 5 Nov 2021 in cs.DS and math.CO

Abstract: In the minimum $k$-cut problem, we want to find the minimum number of edges whose deletion breaks the input graph into at least $k$ connected components. The classic algorithm of Karger and Stein runs in $\tilde O(n{2k-2})$ time, and recent, exciting developments have improved the running time to $O(nk)$. For general, weighted graphs, this is tight assuming popular hardness conjectures. In this work, we show that perhaps surprisingly, $O(nk)$ is not the right answer for simple, unweighted graphs. We design an algorithm that runs in time $O(n{(1-\epsilon)k})$ where $\epsilon>0$ is an absolute constant, breaking the natural $nk$ barrier. This establishes a separation of the two problems in the unweighted and weighted cases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)