Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Attention on Classification for Fire Segmentation (2111.03129v1)

Published 4 Nov 2021 in cs.CV

Abstract: Detection and localization of fire in images and videos are important in tackling fire incidents. Although semantic segmentation methods can be used to indicate the location of pixels with fire in the images, their predictions are localized, and they often fail to consider global information of the existence of fire in the image which is implicit in the image labels. We propose a Convolutional Neural Network (CNN) for joint classification and segmentation of fire in images which improves the performance of the fire segmentation. We use a spatial self-attention mechanism to capture long-range dependency between pixels, and a new channel attention module which uses the classification probability as an attention weight. The network is jointly trained for both segmentation and classification, leading to improvement in the performance of the single-task image segmentation methods, and the previous methods proposed for fire segmentation.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.