Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Panoptic 3D Parsing for Single Image in the Wild (2111.03039v2)

Published 4 Nov 2021 in cs.CV

Abstract: Performing single image holistic understanding and 3D reconstruction is a central task in computer vision. This paper presents an integrated system that performs dense scene labeling, object detection, instance segmentation, depth estimation, 3D shape reconstruction, and 3D layout estimation for indoor and outdoor scenes from a single RGB image. We name our system panoptic 3D parsing (Panoptic3D) in which panoptic segmentation ("stuff" segmentation and "things" detection/segmentation) with 3D reconstruction is performed. We design a stage-wise system, Panoptic3D (stage-wise), where a complete set of annotations is absent. Additionally, we present an end-to-end pipeline, Panoptic3D (end-to-end), trained on a synthetic dataset with a full set of annotations. We show results on both indoor (3D-FRONT) and outdoor (COCO and Cityscapes) scenes. Our proposed panoptic 3D parsing framework points to a promising direction in computer vision. Panoptic3D can be applied to a variety of applications, including autonomous driving, mapping, robotics, design, computer graphics, robotics, human-computer interaction, and augmented reality.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.