Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised and Distributional Detection of Machine-Generated Text (2111.02878v1)

Published 4 Nov 2021 in cs.CL and cs.IR

Abstract: The power of natural language generation models has provoked a flurry of interest in automatic methods to detect if a piece of text is human or machine-authored. The problem so far has been framed in a standard supervised way and consists in training a classifier on annotated data to predict the origin of one given new document. In this paper, we frame the problem in an unsupervised and distributional way: we assume that we have access to a large collection of unannotated documents, a big fraction of which is machine-generated. We propose a method to detect those machine-generated documents leveraging repeated higher-order n-grams, which we show over-appear in machine-generated text as compared to human ones. That weak signal is the starting point of a self-training setting where pseudo-labelled documents are used to train an ensemble of classifiers. Our experiments show that leveraging that signal allows us to rank suspicious documents accurately. Precision at 5000 is over 90% for top-k sampling strategies, and over 80% for nucleus sampling for the largest model we used (GPT2-large). The drop with increased size of model is small, which could indicate that the results hold for other current and future LLMs.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube