Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Count-Less: A Counting Sketch for the Data Plane of High Speed Switches (2111.02759v1)

Published 4 Nov 2021 in cs.NI

Abstract: Demands are increasing to measure per-flow statistics in the data plane of high-speed switches. Measuring flows with exact counting is infeasible due to processing and memory constraints, but a sketch is a promising candidate for collecting approximately per-flow statistics in data plane in real-time. Among them, Count-Min sketch is a versatile tool to measure spectral density of high volume data using a small amount of memory and low processing overhead. Due to its simplicity and versatility, Count-Min sketch and its variants have been adopted in many works as a stand alone or even as a supporting measurement tool. However, Count-Min's estimation accuracy is limited owing to its data structure not fully accommodating Zipfian distribution and the indiscriminate update algorithm without considering a counter value. This in turn degrades the accuracy of heavy hitter, heavy changer, cardinality, and entropy. To enhance measurement accuracy of Count-Min, there have been many and various attempts. One of the most notable approaches is to cascade multiple sketches in a sequential manner so that either mouse or elephant flows should be filtered to separate elephants from mouse flows such as Elastic sketch (an elephant filter leveraging TCAM + Count-Min) and FCM sketch (Count-Min-based layered mouse filters). In this paper, we first show that these cascaded filtering approaches adopting a Pyramid-shaped data structure (allocating more counters for mouse flows) still suffer from under-utilization of memory, which gives us a room for better estimation. To this end, we are facing two challenges: one is (a) how to make Count-Min's data structure accommodate more effectively Zipfian distribution, and the other is (b) how to make update and query work without delaying packet processing in the switch's data plane. Count-Less adopts a different combination ...

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.