Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Count-Less: A Counting Sketch for the Data Plane of High Speed Switches (2111.02759v1)

Published 4 Nov 2021 in cs.NI

Abstract: Demands are increasing to measure per-flow statistics in the data plane of high-speed switches. Measuring flows with exact counting is infeasible due to processing and memory constraints, but a sketch is a promising candidate for collecting approximately per-flow statistics in data plane in real-time. Among them, Count-Min sketch is a versatile tool to measure spectral density of high volume data using a small amount of memory and low processing overhead. Due to its simplicity and versatility, Count-Min sketch and its variants have been adopted in many works as a stand alone or even as a supporting measurement tool. However, Count-Min's estimation accuracy is limited owing to its data structure not fully accommodating Zipfian distribution and the indiscriminate update algorithm without considering a counter value. This in turn degrades the accuracy of heavy hitter, heavy changer, cardinality, and entropy. To enhance measurement accuracy of Count-Min, there have been many and various attempts. One of the most notable approaches is to cascade multiple sketches in a sequential manner so that either mouse or elephant flows should be filtered to separate elephants from mouse flows such as Elastic sketch (an elephant filter leveraging TCAM + Count-Min) and FCM sketch (Count-Min-based layered mouse filters). In this paper, we first show that these cascaded filtering approaches adopting a Pyramid-shaped data structure (allocating more counters for mouse flows) still suffer from under-utilization of memory, which gives us a room for better estimation. To this end, we are facing two challenges: one is (a) how to make Count-Min's data structure accommodate more effectively Zipfian distribution, and the other is (b) how to make update and query work without delaying packet processing in the switch's data plane. Count-Less adopts a different combination ...

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube