Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Temporal Fusion Based Mutli-scale Semantic Segmentation for Detecting Concealed Baggage Threats (2111.02651v2)

Published 4 Nov 2021 in cs.CV and eess.IV

Abstract: Detection of illegal and threatening items in baggage is one of the utmost security concern nowadays. Even for experienced security personnel, manual detection is a time-consuming and stressful task. Many academics have created automated frameworks for detecting suspicious and contraband data from X-ray scans of luggage. However, to our knowledge, no framework exists that utilizes temporal baggage X-ray imagery to effectively screen highly concealed and occluded objects which are barely visible even to the naked eye. To address this, we present a novel temporal fusion driven multi-scale residual fashioned encoder-decoder that takes series of consecutive scans as input and fuses them to generate distinct feature representations of the suspicious and non-suspicious baggage content, leading towards a more accurate extraction of the contraband data. The proposed methodology has been thoroughly tested using the publicly accessible GDXray dataset, which is the only dataset containing temporally linked grayscale X-ray scans showcasing extremely concealed contraband data. The proposed framework outperforms its competitors on the GDXray dataset on various metrics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.