Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finding All Leftmost Separators of Size $\leq k$ (2111.02614v1)

Published 4 Nov 2021 in cs.DS

Abstract: We define a notion called leftmost separator of size at most $k$. A leftmost separator of size $k$ is a minimal separator $S$ that separates two given sets of vertices $X$ and $Y$ such that we "cannot move $S$ more towards $X$" such that $|S|$ remains smaller than the threshold. One of the incentives is that by using leftmost separators we can improve the time complexity of treewidth approximation. Treewidth approximation is a problem which is known to have a linear time FPT algorithm in terms of input size, and only single exponential in terms of the parameter, treewidth. It is not known whether this result can be improved theoretically. However, the coefficient of the parameter $k$ (the treewidth) in the exponent is large. Hence, our goal is to decrease the coefficient of $k$ in the exponent, in order to achieve a more practical algorithm. Hereby, we trade a linear-time algorithm for an $\mathcal{O}(n \log n)$-time algorithm. The previous known $\mathcal{O}(f(k) n \log n)$-time algorithms have dependences of $2{24k}k!$, $2{8.766k}k2$ (a better analysis shows that it is $2{7.671k}k2$), and higher. In this paper, we present an algorithm for treewidth approximation which runs in time $\mathcal{O}(2{6.755k}\ n \log n)$, Furthermore, we count the number of leftmost separators and give a tight upper bound for them. We show that the number of leftmost separators of size $\leq k$ is at most $C_{k-1}$ (Catalan number). Then, we present an algorithm which outputs all leftmost separators in time $\mathcal{O}(\frac{4k}{\sqrt{k}}n)$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube