Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning-based Non-Intrusive Multi-Objective Speech Assessment Model with Cross-Domain Features (2111.02363v5)

Published 3 Nov 2021 in eess.AS, cs.LG, and cs.SD

Abstract: In this study, we propose a cross-domain multi-objective speech assessment model called MOSA-Net, which can estimate multiple speech assessment metrics simultaneously. Experimental results show that MOSA-Net can improve the linear correlation coefficient (LCC) by 0.026 (0.990 vs 0.964 in seen noise environments) and 0.012 (0.969 vs 0.957 in unseen noise environments) in perceptual evaluation of speech quality (PESQ) prediction, compared to Quality-Net, an existing single-task model for PESQ prediction, and improve LCC by 0.021 (0.985 vs 0.964 in seen noise environments) and 0.047 (0.836 vs 0.789 in unseen noise environments) in short-time objective intelligibility (STOI) prediction, compared to STOI-Net (based on CRNN), an existing single-task model for STOI prediction. Moreover, MOSA-Net, originally trained to assess objective scores, can be used as a pre-trained model to be effectively adapted to an assessment model for predicting subjective quality and intelligibility scores with a limited amount of training data. Experimental results show that MOSA-Net can improve LCC by 0.018 (0.805 vs 0.787) in mean opinion score (MOS) prediction, compared to MOS-SSL, a strong single-task model for MOS prediction. In light of the confirmed prediction capability, we further adopt the latent representations of MOSA-Net to guide the speech enhancement (SE) process and derive a quality-intelligibility (QI)-aware SE (QIA-SE) approach accordingly. Experimental results show that QIA-SE provides superior enhancement performance compared with the baseline SE system in terms of objective evaluation metrics and qualitative evaluation test. For example, QIA-SE can improve PESQ by 0.301 (2.953 vs 2.652 in seen noise environments) and 0.18 (2.658 vs 2.478 in unseen noise environments) over a CNN-based baseline SE model.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.