Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization (2111.02355v4)

Published 3 Nov 2021 in cs.LG and stat.ML

Abstract: Covariate-shift generalization, a typical case in out-of-distribution (OOD) generalization, requires a good performance on the unknown test distribution, which varies from the accessible training distribution in the form of covariate shift. Recently, independence-driven importance weighting algorithms in stable learning literature have shown empirical effectiveness to deal with covariate-shift generalization on several learning models, including regression algorithms and deep neural networks, while their theoretical analyses are missing. In this paper, we theoretically prove the effectiveness of such algorithms by explaining them as feature selection processes. We first specify a set of variables, named minimal stable variable set, that is the minimal and optimal set of variables to deal with covariate-shift generalization for common loss functions, such as the mean squared loss and binary cross-entropy loss. Afterward, we prove that under ideal conditions, independence-driven importance weighting algorithms could identify the variables in this set. Analysis of asymptotic properties is also provided. These theories are further validated in several synthetic experiments.

Citations (22)

Summary

We haven't generated a summary for this paper yet.