Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Order Matters: Matching Multiple Knowledge Graphs (2111.02239v1)

Published 3 Nov 2021 in cs.IR

Abstract: Knowledge graphs (KGs) provide information in machine interpretable form. In cases where multiple KGs are used in the same system, that information needs to be integrated. This is usually done by automated matching systems. Most of those systems consider only 1:1 (binary) matching tasks. Thus, matching a larger number of knowledge graphs with such systems would lead to quadratic efforts. In this paper, we empirically analyze different approaches to reduce the task of multi-source matching to a linear number of executions of binary matching systems. We show that the matching order of KGs and the multi-source strategy actually matter and that near-optimal results can be achieved with linear efforts.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.