Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Service Provisioning in NFV-enabled Networks Using Deep Reinforcement Learning (2111.02209v1)

Published 3 Nov 2021 in eess.SY and cs.SY

Abstract: In this paper, we study a Deep Reinforcement Learning (DRL) based framework for an online end-user service provisioning in a Network Function Virtualization (NFV)-enabled network. We formulate an optimization problem aiming to minimize the cost of network resource utilization. The main challenge is provisioning the online service requests by fulfilling their Quality of Service (QoS) under limited resource availability. Moreover, fulfilling the stochastic service requests in a large network is another challenge that is evaluated in this paper. To solve the formulated optimization problem in an efficient and intelligent manner, we propose a Deep Q-Network for Adaptive Resource allocation (DQN-AR) in NFV-enable network for function placement and dynamic routing which considers the available network resources as DQN states. Moreover, the service's characteristics, including the service life time and number of the arrival requests, are modeled by the Uniform and Exponential distribution, respectively. In addition, we evaluate the computational complexity of the proposed method. Numerical results carried out for different ranges of parameters reveal the effectiveness of our framework. In specific, the obtained results show that the average number of admitted requests of the network increases by 7 up to 14% and the network utilization cost decreases by 5 and 20 %.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.