Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rethinking the Image Feature Biases Exhibited by Deep CNN Models (2111.02058v1)

Published 3 Nov 2021 in cs.CV and cs.AI

Abstract: In recent years, convolutional neural networks (CNNs) have been applied successfully in many fields. However, such deep neural models are still regarded as black box in most tasks. One of the fundamental issues underlying this problem is understanding which features are most influential in image recognition tasks and how they are processed by CNNs. It is widely accepted that CNN models combine low-level features to form complex shapes until the object can be readily classified, however, several recent studies have argued that texture features are more important than other features. In this paper, we assume that the importance of certain features varies depending on specific tasks, i.e., specific tasks exhibit a feature bias. We designed two classification tasks based on human intuition to train deep neural models to identify anticipated biases. We devised experiments comprising many tasks to test these biases for the ResNet and DenseNet models. From the results, we conclude that (1) the combined effect of certain features is typically far more influential than any single feature; (2) in different tasks, neural models can perform different biases, that is, we can design a specific task to make a neural model biased toward a specific anticipated feature.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.