Papers
Topics
Authors
Recent
2000 character limit reached

Deterministic Approximation of Random Walks via Queries in Graphs of Unbounded Size (2111.01997v1)

Published 3 Nov 2021 in cs.CC and cs.DS

Abstract: Consider the following computational problem: given a regular digraph $G=(V,E)$, two vertices $u,v \in V$, and a walk length $t\in \mathbb{N}$, estimate the probability that a random walk of length $t$ from $u$ ends at $v$ to within $\pm \varepsilon.$ A randomized algorithm can solve this problem by carrying out $O(1/\varepsilon2)$ random walks of length $t$ from $u$ and outputting the fraction that end at $v$. In this paper, we study deterministic algorithms for this problem that are also restricted to carrying out walks of length $t$ from $u$ and seeing which ones end at $v$. Specifically, if $G$ is $d$-regular, the algorithm is given oracle access to a function $f : [d]t\to {0,1}$ where $f(x)$ is $1$ if the walk from $u$ specified by the edge labels in $x$ ends at $v$. We assume that G is consistently labelled, meaning that the edges of label $i$ for each $i\in [d]$ form a permutation on $V$. We show that there exists a deterministic algorithm that makes $\text{poly}(dt/\varepsilon)$ nonadaptive queries to $f$, regardless of the number of vertices in the graph $G$. Crucially, and in contrast to the randomized algorithm, our algorithm does not simply output the average value of its queries. Indeed, Hoza, Pyne, and Vadhan (ITCS 2021) showed that any deterministic algorithm of the latter form that works for graphs of unbounded size must have query complexity at least $\exp(\tilde{\Omega}(\log(t)\log(1/\varepsilon)))$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.