Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Revisiting spatio-temporal layouts for compositional action recognition (2111.01936v1)

Published 2 Nov 2021 in cs.CV

Abstract: Recognizing human actions is fundamentally a spatio-temporal reasoning problem, and should be, at least to some extent, invariant to the appearance of the human and the objects involved. Motivated by this hypothesis, in this work, we take an object-centric approach to action recognition. Multiple works have studied this setting before, yet it remains unclear (i) how well a carefully crafted, spatio-temporal layout-based method can recognize human actions, and (ii) how, and when, to fuse the information from layout and appearance-based models. The main focus of this paper is compositional/few-shot action recognition, where we advocate the usage of multi-head attention (proven to be effective for spatial reasoning) over spatio-temporal layouts, i.e., configurations of object bounding boxes. We evaluate different schemes to inject video appearance information to the system, and benchmark our approach on background cluttered action recognition. On the Something-Else and Action Genome datasets, we demonstrate (i) how to extend multi-head attention for spatio-temporal layout-based action recognition, (ii) how to improve the performance of appearance-based models by fusion with layout-based models, (iii) that even on non-compositional background-cluttered video datasets, a fusion between layout- and appearance-based models improves the performance.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube