Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design (2111.01916v1)

Published 2 Nov 2021 in cs.AR and q-bio.GN

Abstract: Genome sequence analysis plays a pivotal role in enabling many medical and scientific advancements in personalized medicine, outbreak tracing, and forensics. However, the analysis of genome sequencing data is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems. In this dissertation, we propose four major works, where we characterize the real-system behavior of the genome sequence analysis pipeline and its associated tools, expose the bottlenecks and tradeoffs, and co-design fast and efficient algorithms along with scalable and energy-efficient customized hardware accelerators for the key bottlenecks to enable faster genome sequence analysis. First, we comprehensively analyze the tools in the genome assembly pipeline for long reads in multiple dimensions, uncovering bottlenecks and tradeoffs that different combinations of tools and different underlying systems lead to. Second, we propose GenASM, an acceleration framework that builds upon bitvector-based approximate string matching to accelerate multiple steps of the genome sequence analysis pipeline. We co-design our highly-parallel, scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators. Third, we implement an FPGA-based prototype for GenASM, where state-of-the-art 3D-stacked memory offers high memory bandwidth and FPGA resources offer high parallelism. Fourth, we propose SeGraM, the first hardware acceleration framework for sequence-to-graph mapping and alignment. We co-design algorithms and accelerators for memory-efficient minimizer-based seeding and bitvector-based, highly-parallel sequence-to-graph alignment. Overall, we demonstrate that genome sequence analysis can be accelerated by co-designing scalable and energy-efficient customized accelerators along with efficient algorithms for the key steps of genome sequence analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube