Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing (2111.01874v2)

Published 2 Nov 2021 in q-fin.CP, cs.CC, cs.CE, cs.NA, math.NA, and q-fin.PR

Abstract: When approximating the expectations of a functional of a solution to a stochastic differential equation, the numerical performance of deterministic quadrature methods, such as sparse grid quadrature and quasi-Monte Carlo (QMC) methods, may critically depend on the regularity of the integrand. To overcome this issue and improve the regularity structure of the problem, we consider cases in which analytic smoothing (bias-free mollification) cannot be performed and introduce a novel numerical smoothing approach by combining a root-finding method with a one-dimensional numerical integration with respect to a single well-chosen variable. We prove that, under appropriate conditions, the resulting function of the remaining variables is highly smooth, potentially affording the improved efficiency of adaptive sparse grid quadrature (ASGQ) and QMC methods, particularly when combined with hierarchical transformations (ie., the Brownian bridge and Richardson extrapolation on the weak error). This approach facilitates the effective treatment of high dimensionality. Our study is motivated by option pricing problems, focusing on dynamics where the discretization of the asset price is necessary. Based on our analysis and numerical experiments, we demonstrate the advantages of combining numerical smoothing with the ASGQ and QMC methods over these methods without smoothing and the Monte Carlo approach. Finally, our approach is generic and can be applied to solve a broad class of problems, particularly approximating distribution functions, computing financial Greeks, and estimating risk quantities.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.