Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards an Optimal Hybrid Algorithm for EV Charging Stations Placement using Quantum Annealing and Genetic Algorithms (2111.01622v3)

Published 2 Nov 2021 in quant-ph and cs.NE

Abstract: Quantum Annealing is a heuristic for solving optimization problems that have seen a recent surge in usage owing to the success of D-Wave Systems. This paper aims to find a good heuristic for solving the Electric Vehicle Charger Placement (EVCP) problem, a problem that stands to be very important given the costs of setting up an electric vehicle (EV) charger and the expected surge in electric vehicles across the world. The same problem statement can also be generalized to the optimal placement of any entity in a grid and can be explored for further uses. Finally, the authors introduce a novel heuristic combining Quantum Annealing and Genetic Algorithms to solve the problem. The proposed hybrid approach entails seeding the genetic algorithms with the results of quantum annealing. Experimental results show that this method decreases the minimum distance from Points of Interest (POI) by $42.89\%$ compared to vanilla quantum annealing over the sample EVCP datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.