Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Integrating Pretrained Language Model for Dialogue Policy Learning (2111.01398v1)

Published 2 Nov 2021 in cs.CL and cs.AI

Abstract: Reinforcement Learning (RL) has been witnessed its potential for training a dialogue policy agent towards maximizing the accumulated rewards given from users. However, the reward can be very sparse for it is usually only provided at the end of a dialog session, which causes unaffordable interaction requirements for an acceptable dialog agent. Distinguished from many efforts dedicated to optimizing the policy and recovering the reward alternatively which suffers from easily getting stuck in local optima and model collapse, we decompose the adversarial training into two steps: 1) we integrate a pre-trained LLM as a discriminator to judge whether the current system action is good enough for the last user action (i.e., \textit{next action prediction}); 2) the discriminator gives and extra local dense reward to guide the agent's exploration. The experimental result demonstrates that our method significantly improves the complete rate (~4.4\%) and success rate (~8.0\%) of the dialogue system.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.