Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions (2111.01235v2)

Published 1 Nov 2021 in cs.LG, cs.AI, and cs.CL

Abstract: People affected by machine learning model decisions may benefit greatly from access to recourses, i.e. suggestions about what features they could change to receive a more favorable decision from the model. Current approaches try to optimize for the cost incurred by users when adopting a recourse, but they assume that all users share the same cost function. This is an unrealistic assumption because users might have diverse preferences about their willingness to change certain features. In this work, we introduce a new method for identifying recourse sets for users which does not assume that users' preferences are known in advance. We propose an objective function, Expected Minimum Cost (EMC), based on two key ideas: (1) when presenting a set of options to a user, there only needs to be one low-cost solution that the user could adopt; (2) when we do not know the user's true cost function, we can approximately optimize for user satisfaction by first sampling plausible cost functions from a distribution, then finding a recourse set that achieves a good cost for these samples. We optimize EMC with a novel discrete optimization algorithm, Cost Optimized Local Search (COLS), which is guaranteed to improve the recourse set quality over iterations. Experimental evaluation on popular real-world datasets with simulated users demonstrates that our method satisfies up to 25.89 percentage points more users compared to strong baseline methods, while, the human evaluation shows that our recourses are preferred more than twice as often as the strongest baseline recourses. Finally, using standard fairness metrics we show that our method can provide more fair solutions across demographic groups than baselines. We provide our source code at: https://github.com/prateeky2806/EMC-COLS-recourse

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube