Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Federated Learning via Over-The-Air Computation (2111.01221v4)

Published 1 Nov 2021 in cs.LG

Abstract: This paper investigates the robustness of over-the-air federated learning to Byzantine attacks. The simple averaging of the model updates via over-the-air computation makes the learning task vulnerable to random or intended modifications of the local model updates of some malicious clients. We propose a robust transmission and aggregation framework to such attacks while preserving the benefits of over-the-air computation for federated learning. For the proposed robust federated learning, the participating clients are randomly divided into groups and a transmission time slot is allocated to each group. The parameter server aggregates the results of the different groups using a robust aggregation technique and conveys the result to the clients for another training round. We also analyze the convergence of the proposed algorithm. Numerical simulations confirm the robustness of the proposed approach to Byzantine attacks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.