Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Partial-Adaptive Submodular Maximization (2111.00986v1)

Published 1 Nov 2021 in cs.LG

Abstract: The goal of a typical adaptive sequential decision making problem is to design an interactive policy that selects a group of items sequentially, based on some partial observations, to maximize the expected utility. It has been shown that the utility functions of many real-world applications, including pooled-based active learning and adaptive influence maximization, satisfy the property of adaptive submodularity. However, most of existing studies on adaptive submodular maximization focus on the fully adaptive setting, i.e., one must wait for the feedback from \emph{all} past selections before making the next selection. Although this approach can take full advantage of feedback from the past to make informed decisions, it may take a longer time to complete the selection process as compared with the non-adaptive solution where all selections are made in advance before any observations take place. In this paper, we explore the problem of partial-adaptive submodular maximization where one is allowed to make multiple selections in a batch simultaneously and observe their realizations together. Our approach enjoys the benefits of adaptivity while reducing the time spent on waiting for the observations from past selections. To the best of our knowledge, no results are known for partial-adaptive policies for the non-monotone adaptive submodular maximization problem. We study this problem under both cardinality constraint and knapsack constraints, and develop effective and efficient solutions for both cases. We also analyze the batch query complexity, i.e., the number of batches a policy takes to complete the selection process, of our policy under some additional assumptions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube