Papers
Topics
Authors
Recent
2000 character limit reached

Minimum Description Length Recurrent Neural Networks (2111.00600v4)

Published 31 Oct 2021 in cs.CL

Abstract: We train neural networks to optimize a Minimum Description Length score, i.e., to balance between the complexity of the network and its accuracy at a task. We show that networks optimizing this objective function master tasks involving memory challenges and go beyond context-free languages. These learners master languages such as $anbn$, $anbncn$, $anb{2n}$, $anbmc{n+m}$, and they perform addition. Moreover, they often do so with 100% accuracy. The networks are small, and their inner workings are transparent. We thus provide formal proofs that their perfect accuracy holds not only on a given test set, but for any input sequence. To our knowledge, no other connectionist model has been shown to capture the underlying grammars for these languages in full generality.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.