Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Laplacian Constrained Precision Matrix Estimation: Existence and High Dimensional Consistency (2111.00590v2)

Published 31 Oct 2021 in stat.ML, cs.LG, and eess.SP

Abstract: This paper considers the problem of estimating high dimensional Laplacian constrained precision matrices by minimizing Stein's loss. We obtain a necessary and sufficient condition for existence of this estimator, that consists on checking whether a certain data dependent graph is connected. We also prove consistency in the high dimensional setting under the symmetrized Stein loss. We show that the error rate does not depend on the graph sparsity, or other type of structure, and that Laplacian constraints are sufficient for high dimensional consistency. Our proofs exploit properties of graph Laplacians, the matrix tree theorem, and a characterization of the proposed estimator based on effective graph resistances. We validate our theoretical claims with numerical experiments.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)