Papers
Topics
Authors
Recent
2000 character limit reached

Laplacian Constrained Precision Matrix Estimation: Existence and High Dimensional Consistency (2111.00590v2)

Published 31 Oct 2021 in stat.ML, cs.LG, and eess.SP

Abstract: This paper considers the problem of estimating high dimensional Laplacian constrained precision matrices by minimizing Stein's loss. We obtain a necessary and sufficient condition for existence of this estimator, that consists on checking whether a certain data dependent graph is connected. We also prove consistency in the high dimensional setting under the symmetrized Stein loss. We show that the error rate does not depend on the graph sparsity, or other type of structure, and that Laplacian constraints are sufficient for high dimensional consistency. Our proofs exploit properties of graph Laplacians, the matrix tree theorem, and a characterization of the proposed estimator based on effective graph resistances. We validate our theoretical claims with numerical experiments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.