Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Text Classification for Task-based Source Code Related Questions (2111.00580v1)

Published 31 Oct 2021 in cs.SE, cs.CL, and cs.LG

Abstract: There is a key demand to automatically generate code for small tasks for developers. Websites such as StackOverflow provide a simplistic way by offering solutions in small snippets which provide a complete answer to whatever task question the developer wants to code. Natural Language Processing and particularly Question-Answering Systems are very helpful in resolving and working on these tasks. In this paper, we develop a two-fold deep learning model: Seq2Seq and a binary classifier that takes in the intent (which is in natural language) and code snippets in Python. We train both the intent and the code utterances in the Seq2Seq model, where we decided to compare the effect of the hidden layer embedding from the encoder for representing the intent and similarly, using the decoder's hidden layer embeddings for the code sequence. Then we combine both these embeddings and then train a simple binary neural network classifier model for predicting if the intent is correctly answered by the predicted code sequence from the seq2seq model. We find that the hidden state layer's embeddings perform slightly better than regular standard embeddings from a constructed vocabulary. We experimented with our tests on the CoNaLa dataset in addition to the StaQC database consisting of simple task-code snippet-based pairs. We empirically establish that using additional pre-trained embeddings for code snippets in Python is less context-based in comparison to using hidden state context vectors from seq2seq models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.