Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE (2111.00343v1)

Published 30 Oct 2021 in cs.LG

Abstract: Recent work in deep learning focuses on solving physical systems in the Ordinary Differential Equation or Partial Differential Equation. This current work proposed a variant of Convolutional Neural Networks (CNNs) that can learn the hidden dynamics of a physical system using ordinary differential equation (ODEs) systems (ODEs) and Partial Differential Equation systems (PDEs). Instead of considering the physical system such as image, time -series as a system of multiple layers, this new technique can model a system in the form of Differential Equation (DEs). The proposed method has been assessed by solving several steady-state PDEs on irregular domains, including heat equations, Navier-Stokes equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.