Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Framework for Transforming Specifications in Reinforcement Learning (2111.00272v3)

Published 30 Oct 2021 in cs.FL

Abstract: Reactive synthesis algorithms allow automatic construction of policies to control an environment modeled as a Markov Decision Process (MDP) that are optimal with respect to high-level temporal logic specifications. However, they assume that the MDP model is known a priori. Reinforcement Learning (RL) algorithms, in contrast, are designed to learn an optimal policy when the transition probabilities of the MDP are unknown, but require the user to associate local rewards with transitions. The appeal of high-level temporal logic specifications has motivated research to develop RL algorithms for synthesis of policies from specifications. To understand the techniques, and nuanced variations in their theoretical guarantees, in the growing body of resulting literature, we develop a formal framework for defining transformations among RL tasks with different forms of objectives. We define the notion of a sampling-based reduction to transform a given MDP into another one which can be simulated even when the transition probabilities of the original MDP are unknown. We formalize the notions of preservation of optimal policies, convergence, and robustness of such reductions. We then use our framework to restate known results, establish new results to fill in some gaps, and identify open problems. In particular, we show that certain kinds of reductions from LTL specifications to reward-based ones do not exist, and prove the non-existence of RL algorithms with PAC-MDP guarantees for safety specifications.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube