MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric Learning (2111.00232v4)
Abstract: In visual recognition tasks, few-shot learning requires the ability to learn object categories with few support examples. Its re-popularity in light of the deep learning development is mainly in image classification. This work focuses on few-shot semantic segmentation, which is still a largely unexplored field. A few recent advances are often restricted to single-class few-shot segmentation. In this paper, we first present a novel multi-way (class) encoding and decoding architecture which effectively fuses multi-scale query information and multi-class support information into one query-support embedding. Multi-class segmentation is directly decoded upon this embedding. For better feature fusion, a multi-level attention mechanism is proposed within the architecture, which includes the attention for support feature modulation and attention for multi-scale combination. Last, to enhance the embedding space learning, an additional pixel-wise metric learning module is introduced with triplet loss formulated on the pixel-level embedding of the input image. Extensive experiments on standard benchmarks PASCAL-5i and COCO-20i show clear benefits of our method over the state of the art in few-shot segmentation
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.