Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Semi-Supervised Learning with Class Distribution Mismatch (2111.00010v1)

Published 29 Oct 2021 in cs.LG

Abstract: Many existing federated learning (FL) algorithms are designed for supervised learning tasks, assuming that the local data owned by the clients are well labeled. However, in many practical situations, it could be difficult and expensive to acquire complete data labels. Federated semi-supervised learning (Fed-SSL) is an attractive solution for fully utilizing both labeled and unlabeled data. Similar to that encountered in federated supervised learning, class distribution of labeled/unlabeled data could be non-i.i.d. among clients. Besides, in each client, the class distribution of labeled data may be distinct from that of unlabeled data. Unfortunately, both can severely jeopardize the FL performance. To address such challenging issues, we introduce two proper regularization terms that can effectively alleviate the class distribution mismatch problem in Fed-SSL. In addition, to overcome the non-i.i.d. data, we leverage the variance reduction and normalized averaging techniques to develop a novel Fed-SSL algorithm. Theoretically, we prove that the proposed method has a convergence rate of $\mathcal{O}(1/\sqrt{T})$, where $T$ is the number of communication rounds, even when the data distribution are non-i.i.d. among clients. To the best of our knowledge, it is the first formal convergence result for Fed-SSL problems. Numerical experiments based on MNIST data and CIFAR-10 data show that the proposed method can greatly improve the classification accuracy compared to baselines.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.