Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Communicate with Reinforcement Learning for an Adaptive Traffic Control System (2110.15779v1)

Published 29 Oct 2021 in cs.LG and cs.MA

Abstract: Recent work in multi-agent reinforcement learning has investigated inter agent communication which is learned simultaneously with the action policy in order to improve the team reward. In this paper, we investigate independent Q-learning (IQL) without communication and differentiable inter-agent learning (DIAL) with learned communication on an adaptive traffic control system (ATCS). In real world ATCS, it is impossible to present the full state of the environment to every agent so in our simulation, the individual agents will only have a limited observation of the full state of the environment. The ATCS will be simulated using the Simulation of Urban MObility (SUMO) traffic simulator in which two connected intersections are simulated. Every intersection is controlled by an agent which has the ability to change the direction of the traffic flow. Our results show that a DIAL agent outperforms an independent Q-learner on both training time and on maximum achieved reward as it is able to share relevant information with the other agents.

Citations (1)

Summary

We haven't generated a summary for this paper yet.