Papers
Topics
Authors
Recent
Search
2000 character limit reached

How to Leverage Multimodal EHR Data for Better Medical Predictions?

Published 29 Oct 2021 in cs.CL | (2110.15763v1)

Abstract: Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of medical service. However, the complexity of electronic health records (EHR) data is a challenge for the application of deep learning. Specifically, the data produced in the hospital admissions are monitored by the EHR system, which includes structured data like daily body temperature, and unstructured data like free text and laboratory measurements. Although there are some preprocessing frameworks proposed for specific EHR data, the clinical notes that contain significant clinical value are beyond the realm of their consideration. Besides, whether these different data from various views are all beneficial to the medical tasks and how to best utilize these data remain unclear. Therefore, in this paper, we first extract the accompanying clinical notes from EHR and propose a method to integrate these data, we also comprehensively study the different models and the data leverage methods for better medical task prediction. The results on two medical prediction tasks show that our fused model with different data outperforms the state-of-the-art method that without clinical notes, which illustrates the importance of our fusion method and the value of clinical note features. Our code is available at https: //github.com/emnlp-mimic/mimic.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

GitHub