Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fusing ASR Outputs in Joint Training for Speech Emotion Recognition (2110.15684v2)

Published 29 Oct 2021 in eess.AS, cs.CL, cs.MM, and cs.SD

Abstract: Alongside acoustic information, linguistic features based on speech transcripts have been proven useful in Speech Emotion Recognition (SER). However, due to the scarcity of emotion labelled data and the difficulty of recognizing emotional speech, it is hard to obtain reliable linguistic features and models in this research area. In this paper, we propose to fuse Automatic Speech Recognition (ASR) outputs into the pipeline for joint training SER. The relationship between ASR and SER is understudied, and it is unclear what and how ASR features benefit SER. By examining various ASR outputs and fusion methods, our experiments show that in joint ASR-SER training, incorporating both ASR hidden and text output using a hierarchical co-attention fusion approach improves the SER performance the most. On the IEMOCAP corpus, our approach achieves 63.4% weighted accuracy, which is close to the baseline results achieved by combining ground-truth transcripts. In addition, we also present novel word error rate analysis on IEMOCAP and layer-difference analysis of the Wav2vec 2.0 model to better understand the relationship between ASR and SER.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.