Improved Sliding Window Algorithms for Clustering and Coverage via Bucketing-Based Sketches (2110.15533v1)
Abstract: Streaming computation plays an important role in large-scale data analysis. The sliding window model is a model of streaming computation which also captures the recency of the data. In this model, data arrives one item at a time, but only the latest $W$ data items are considered for a particular problem. The goal is to output a good solution at the end of the stream by maintaining a small summary during the stream. In this work, we propose a new algorithmic framework for designing efficient sliding window algorithms via bucketing-based sketches. Based on this new framework, we develop space-efficient sliding window algorithms for $k$-cover, $k$-clustering and diversity maximization problems. For each of the above problems, our algorithm achieves $(1\pm \varepsilon)$-approximation. Compared with the previous work, it improves both the approximation ratio and the space.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.