Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Data-driven Residual Generation for Early Fault Detection with Limited Data (2110.15385v1)

Published 28 Sep 2021 in eess.SY, cs.AI, and cs.SY

Abstract: Traditionally, fault detection and isolation community has used system dynamic equations to generate diagnosers and to analyze detectability and isolability of the dynamic systems. Model-based fault detection and isolation methods use system model to generate a set of residuals as the bases for fault detection and isolation. However, in many complex systems it is not feasible to develop highly accurate models for the systems and to keep the models updated during the system lifetime. Recently, data-driven solutions have received an immense attention in the industries systems for several practical reasons. First, these methods do not require the initial investment and expertise for developing accurate models. Moreover, it is possible to automatically update and retrain the diagnosers as the system or the environment change over time. Finally, unlike the model-based methods it is straight forward to combine time series measurements such as pressure and voltage with other sources of information such as system operating hours to achieve a higher accuracy. In this paper, we extend the traditional model-based fault detection and isolation concepts such as residuals, and detectable and isolable faults to the data-driven domain. We then propose an algorithm to automatically generate residuals from the normal operating data. We present the performance of our proposed approach through a comparative case study.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.