Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pruning Attention Heads of Transformer Models Using A* Search: A Novel Approach to Compress Big NLP Architectures (2110.15225v3)

Published 28 Oct 2021 in cs.CL and cs.LG

Abstract: Recent years have seen a growing adoption of Transformer models such as BERT in Natural Language Processing and even in Computer Vision. However, due to their size, there has been limited adoption of such models within resource-constrained computing environments. This paper proposes novel pruning algorithm to compress transformer models by eliminating redundant Attention Heads. We apply the A* search algorithm to obtain a pruned model with strict accuracy guarantees. Our results indicate that the method could eliminate as much as 40% of the attention heads in the BERT transformer model with no loss in accuracy.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.