Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energy Efficient Resource Allocation in Federated Fog Computing Networks (2110.15204v1)

Published 28 Oct 2021 in cs.NI and eess.SP

Abstract: There is a continuous growth in demand for time sensitive applications which has shifted the cloud paradigm from a centralized computing architecture towards distributed heterogeneous computing platforms where resources located at the edge of the network are used to provide cloud-like services. This paradigm is widely known as fog computing. Virtual machines (VMs) have been widely utilized in both paradigms to enhance the network scalability, improve resource utilization, and energy efficiency. Moreover, Passive Optical Networks (PONs) are a technology suited to handling the enormous volumes of data generated in the access network due to their energy efficiency and large bandwidth. In this paper, we utilize a PON to provide the connectivity between multiple distributed fog units to achieve federated (i.e. cooperative) computing units in the access network to serve intensive demands. We propose a mixed integer linear program (MILP) to optimize the VM placement in the federated fog computing units with the objective of minimizing the total power consumption while considering inter-VM traffic. The results show a significant power saving as a result of the proposed optimization model by up to 52%, in the VM-allocation compared to a baseline approach that allocates the VM requests while neglecting the power consumption and inter-VMs traffic in the optimization framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.